

UNIVERSITY OF AMSTERDAM

Vision Foundation Models (with academic compute)

YUKI M ASANO ECCV 2024

UNIVERSITY OF AMSTERDAM

Vision Foundation Models

YUKI M ASANO ECCV 2024

with academic compute

SSLWIN

Instruction tuning: the difference between GPT-3 and

X requires industrial compute

X model is relatively useless

requires fraction of compute

X requires industrial compute

model is already useful

Why Self-supervised Learning still matters, despite CLIP and

Problems of labels

NeCo: Improving DINOv2's spatial representations in 19 GPU hours with Patch Neighbor Consistency.

Valentinos Pariza, Mohammadreza Salehi, Gertjan Burghouts, Francesco Locatello, Yuki M. Asten/oww.taste.com.au/recipes/creamy-bacon-carbonara/12c27b1e-5fb6-48c9-ac42-82a37cc8ab30?nk=3b0399578618abc93c6fc9abab4a14a7-1727548620

How semantic are patch representations? Which patch from the whole dataset is the closest?

Qualitative results in DINOv2

(Drawings / Animals)

But often...

Oquab et al. DINOv2: Learning Robust Visual Features without Supervision. TMLR 2023 Darcet et al. Vision Transformers Need Registers. ICLR 2024

with SoTA DINOv2-R model

Idea of Patch Nearest Neighbor Consistency: intuitive

Given a query patch of a right shoulder, top neighbors should be in the following order:

(1) All Right Shoulder Patches, (2) All Left Shoulder Patches, (...) (3) Everything Else

Query Patch

UNIVERSITY OF AMSTERDAM

Example Patches

8

NeCo: Improving DINOv2's spatial representations in 19 M. Asano. arxiv 2024

NeCo: Improving DINOv2's spatial representations in 19 M. Asano. arxiv 2024

10

×××

NeCo: Improving DINOv2's spatial representations in 19 M. Asano. arxiv 2024

××××

M. Asano. arxiv 2024

NeCo: Improving DINOv2's spatial representations in 19 M. Asano. arxiv 2024

13

Results

University of Amsterdam

1	4

Evaluation 1: Visual in-context segmentation via dense NN retrieval

Patch Annotations

UNIVERSITY OF AMSTERDAM

2023

Towards In-context Scene Understanding. Ivana Balažević, David Steiner, Nikhil Parthasarathy, Relja Arandjelović, Olivier J. Hénaff. NeurIPS

-	-
п	5

In-context scene understanding benchmark

matches performances of DINOv2-R with ~15x less data

	0
п.	6
	U
	_

In-context scene understanding benchmark

UNIVERSITY OF AMSTERDAM

NeCo: Improving DINOv2's spatial representations in 19 M. Asano. arxiv 2024

17

Linear Segmentation Evaluation

- Encode Image to patch-level features,
- Decode with a linear layer the per pixel semantic labels of the image,
- Supervised training of the linear layer of the decoder for this task.

UNIVERSITY OF AMSTERDAM

I semantic labels of the image, of the decoder for this task.

-	_
-	U
_	\sim
_	
	-

Linear segmentation performance

Method	Backbone	Params	COCO-Things	COCO-Stuff	Pascal VOC	ADE20K
DINO	ViT-S/16	21M	43.9	45.9	50.2	17.5
TimeT	ViT-S/16	21M	58.2	48.7	66.3	20.7
iBOT	ViT-S/16	21M	58.9	51.5	66.1	21.8
CrOC	ViT-S/16	21M	64.3	51.2	67.4	23.1
CrlBo	ViT-S/16	21M	64.3	49.1	71.6	22.7
DINOv2R	ViT-S/14	21M	75.3	56.0	74.2	35.0
PaNeCo	ViT-S/14	21M	82.3	62.0	81.3	40.1
DINO	ViT-B/16	85M	55.8	51.2	62.7	23.6
MAE	ViT-B/16	85M	38.0	38.6	32.9	5.8
iBOT	ViT-B/16	85M	69.4	55.9	73.1	30.1
CrIBo	ViT-B/16	$85\mathrm{M}$	69.6	53.0	73.9	25.7
DINOv2R	ViT-B/14	85M	78.3	57.6	79.8	40.3
PaNeCo	ViT-B/14	85M	85.5	63.3	83.3	44.9

A linear segmentation head is trained on top of the frozen spatial features obtained from different feature extractors. We report the mIoU scores achieved on the validation sets of 4 different datasets.

	-
_	
_	-
_	
_	_

Pascal VOC								COCO-Things						
	At Init			+PANECO			At Init			+PANECO				
Pretrain	K=GT	K = 500	Lin.	K=GT	K = 500	Lin.	K=21	K=500	Lin.	K=21	K = 500	Lin.		
iBOT [92]	4.4	31.1	66.1	$15.4^{\uparrow 11.0}$	51.2 ^{20.1}	$68.6^{\uparrow 2.5}$	7.6	28.0	58.9	$20.4^{\uparrow 12.8}$	52.8 ^{24.8}	67.7 ^{*8.8}		

UNIVERSITY OF AMSTERDAM

			Pas	cal VO	С	COCO-Things						
	At Init			+PANECO			At Init			+PANECO		
Pretrain	K=GT	K = 500	Lin.	K=GT	K = 500	Lin.	K=21	K=500	Lin.	K=21	K = 500	Lin.
iBOT [92]	4.4	31.1	66.1	$15.4^{\uparrow 11.0}$	$51.2^{\uparrow 20.1}$	$68.6^{\uparrow 2.5}$	7.6	28.0	58.9	$20.4^{\uparrow 12.8}$	$52.8^{\uparrow 24.8}$	67.7 ^{†8.8}
DINO [15]	4.3	17.3	50.2	$14.5^{\uparrow 10.2}$	$47.9^{\uparrow 30.6}$	$61.3^{\uparrow 11.1}$	5.4	19.2	43.9	$16.9^{\uparrow 11.5}$	$50.0^{\uparrow 30.8}$	$62.4^{\uparrow 18.5}$

\sim	
	-
_	_
	_
_	_

			Pas	cal VO	С		COCO-Things					
	ŀ	At Init		+PANECO			At Init			+PANECO		
Pretrain	K=GT	K = 500	Lin.	K=GT	K = 500	Lin.	K=21	K=500	Lin.	K=21	K = 500	Lin.
iBOT [92]	4.4	31.1	66.1	$15.4^{\uparrow 11.0}$	$51.2^{\uparrow 20.1}$	$68.6^{\uparrow 2.5}$	7.6	28.0	58.9	$20.4^{\uparrow 12.8}$	$52.8^{\uparrow 24.8}$	67.7 ^{†8.8}
DINO [15]	4.3	17.3	50.2	$14.5^{\uparrow 10.2}$	$47.9^{\uparrow 30.6}$	$61.3^{\uparrow 11.1}$	5.4	19.2	43.9	$16.9^{\uparrow 11.5}$	$50.0^{\uparrow 30.8}$	$62.4^{\uparrow 18.5}$
TimeT [66]	12.2	46.2	66.3	17.9 ^{†5.7}	$52.1^{\uparrow 5.9}$	$68.5^{\uparrow 2.2}$	18.4	44.6	58.2	$20.6^{\uparrow 2.2}$	54.3 ^{^9.7}	64.8 ^{^6.6}

	Pascal VOC									COCO-Things						
	A	At Init		+	-PANEC		At Init		+PANECO							
Pretrain	K=GT	K = 500	Lin.	K=GT	K = 500	Lin.	K=21	K=500	Lin.	K=21	K = 500	Lin.				
iBOT [92]	4.4	31.1	66.1	$15.4^{\uparrow 11.0}$	$51.2^{\uparrow 20.1}$	$68.6^{\uparrow 2.5}$	7.6	28.0	58.9	$20.4^{\uparrow 12.8}$	$52.8^{\uparrow 24.8}$	67.7 ^{†8.8}				
DINO [15]	4.3	17.3	50.2	$14.5^{\uparrow 10.2}$	$47.9^{\uparrow 30.6}$	$61.3^{\uparrow 11.1}$	5.4	19.2	43.9	$16.9^{\uparrow 11.5}$	$50.0^{\uparrow 30.8}$	$62.4^{\uparrow 18.5}$				
TimeT[66]	12.2	46.2	66.3	$17.9^{\uparrow 5.7}$	$52.1^{\uparrow 5.9}$	$68.5^{\uparrow 2.2}$	18.4	44.6	58.2	$20.6^{\uparrow 2.2}$	54.3 ^{†9.7}	64.8 ^{^6.6}				
Leopart [93]	15.4	51.2	66.5	$21.0^{\uparrow 5.6}$	$55.3^{\uparrow 4.1}$	$68.3^{\uparrow 1.8}$	14.8	53.2	63.0	$18.8^{\uparrow 4.0}$	53.9 ^{^0.7}	$65.4^{\uparrow 2.4}$				

NeCo: Improving DINOv2's spatial representations in 19 M. Asano. arxiv 2024

			Pas	cal VO	C	COCO-Things							
	At Init +PANECO				0		At Init		+PANECO				
Pretrain	K=GT	K = 500	Lin.	K=GT	K = 500	Lin.	K=21	K=500	Lin.	K=21	K = 500	Lin.	
iBOT [92]	4.4	31.1	66.1	$15.4^{\uparrow 11.0}$	$51.2^{\uparrow 20.1}$	$68.6^{\uparrow 2.5}$	7.6	28.0	58.9	$20.4^{\uparrow 12.8}$	$52.8^{\uparrow 24.8}$	67.7 ^{†8.8}	
DINO [15]	4.3	17.3	50.2	$14.5^{\uparrow 10.2}$	$47.9^{\uparrow 30.6}$	$61.3^{\uparrow 11.1}$	5.4	19.2	43.9	$16.9^{\uparrow 11.5}$	$50.0^{\uparrow 30.8}$	$62.4^{\uparrow 18.5}$	
TimeT $[66]$	12.2	46.2	66.3	$17.9^{\uparrow 5.7}$	$52.1^{\uparrow 5.9}$	$68.5^{\uparrow 2.2}$	18.4	44.6	58.2	$20.6^{\uparrow 2.2}$	54.3 ^{^9.7}	64.8 ^{^6.6}	
Leopart [93]	15.4	51.2	66.5	$21.0^{\uparrow 5.6}$	$55.3^{\uparrow 4.1}$	$68.3^{\uparrow 1.8}$	14.8	53.2	63.0	$18.8^{14.0}$	53.9 ^{^0.7}	$65.4^{\uparrow 2.4}$	
CrIBo [49]	18.3	54.5	71.6	$21.7^{\uparrow 3.4}$	$59.6^{\uparrow 5.1}$	$72.1^{\uparrow 0.5}$	14.5	48.3	64.3	$21.1^{+6.6}$	$54.0^{15.7}$	68.0 ^{†3.7}	

frozen clustering and linear segmentation results on Pascal VOC and COCO-Things.

 \rightarrow PaNeCo considerably boosts (\uparrow) the performance of **different backbones**

Qualitative Results

University of Amsterdam

Nearest Neighbors of Patches from representations Query Retrieved Nearest Neighbors

DINOv2R

- :
- .
- •
- .

PaNeCo

- .
- •
- •

DINOv2R

- PaNeCo

NeCo: Improving DINOv2's spatial representations in 19 GPU hours with Patch Neighbor Consistency. Valentinos Pariza, Mohammadreza Salehi, Gertjan Burghouts, Francesco Locatello, Yuki

PaNeCo rarely confuses semantically close patches Query Retrieved Nearest Neighbors

On average such cases appear around 6% of the times from Pascal VOC retrieval cases.

UNIVERSITY OF AMSTERDAM

NeCo: Improving DINOv2's spatial representations in 19 M. Asano. arxiv 2024

k-Means Semantic Segmentation

UNIVERSITY OF AMSTERDAM

NeCo: Improving DINOv2's spatial representations in 19 M. Asano. arxiv 2024

NeCo: Improving DINOv2's spatial representations in 19 GPU hours with Patch Neighbor Consistency. Valentinos Pariza, Mohammadreza Salehi, Gertjan Burghouts, Francesco Locatello, Yuki

What's the sauce?

- Dense Patch-ordering is loss well suited for post-pretraining
- · We can improve upon (very strong) DINO/ DINOv2R models
- finetuning
- also: code/models now available!

JNIVERSITY OF AMSTERDAM

Strongest improvements in in-context semantic segmentation and even full-

Time does tell: self-supervised time-tuning of dense image representations.

Mohammadrentips. Stahahda Fitanto a fatanto a fatanto a fatanto a fatanto a fatanto a fatanta fatanto a fa

Current Vision Foundation Models are trained with images. Videos can enable new directions

Visual development for AI

+ their insane scal

"Get" physics

Embodied AI

Augmentations are crucial in classic image-SSL, but forcing frames to be invariant is limiting

But does this generally make sense?

Solution is obvious

Salehi, Gavves, Snoek, Asano. Time does tell: self-supervised time-tuning of dense image representations. ICCV 2023

We model a video by tracking image patches, and aligning their clustered features

UNIVERSITY OF AMSTERDAM ×X× **UKI ASANO**

t=T

U

 z_T

Salehi, Gavves, Snoek, Asano. Time does tell: self-supervised time-tuning of dense image representations. ICCV 2023

34

Using videos to learn self-supervised image encoders

35

Ablations demonstrate using time helps learn better features Modelling time is Model learns from temporal esential info

Results

SoTA on unsupervised video segmentation

	Clustering							
	YTVOS				DAVIS			
	F	С	D	F	С	D		
Trained on Images								
Resnet50	44.0	43.4	1.7	39.3	37.4	4.2		
SwAV [8]	39.5	38.2	3.2	32.0	29.6	7.3		
DINO [9]	39.1	37.9	1.9	30.2	31.0	1.6		
Leopart [74]	39.2	37.9	11.7	30.3	30.2	16.5		
Trained on Videos								
STEGO*	41.5	40.3	2.0	31.9	31.0	3.2		
DINO*	37.2	36.1	1.2	29.3	29.2	2.4		
Leopart*	41.5	40.5	7.7	37.5	36.5	12.6		
TIMET(ours)	52.5	51.3	13.3	53.7	53.0	20.5		

SoTA on unsupervised image segmentation

	Pascal VOC					
	K=21	K=500	LC	FCN		
Trained on Images						
ResNet-50	4.5	36.5	53.8	-		
DINO [9]	5.5	17.4	50.6	60.6		
SwAV [8]	11.6	35.7	50.7	-		
MaskContrast [57]	35.0	45.4	49.2	-		
DenseCL [61]	-	43.6	49.0	69.4		
STEGO [21]	7.0	19.5	59.1	63.5		
CrOC [52]	20.6	-	61.6	-		
Leopart [74]	36.6	50.5	68.0	70.1		
Trained on Videos						
STEGO*	4.0	15.5	51.1	55.5		
Leopart*	14. 9	21.2	53.2	63.2		
Flowdino [†] [70]	-	-	59.4	-		
TIMET (ours)	34.5	53.2	68.0	70.6		

Results on unsupervised video semantic segmentation

38

Unsupervised Semantic Segmentation on videos mply running k-means on a couple of videos' spatial features, k=10]

DINO

Ours

Unsupervised Semantic Segmentation on videos [here: running k-means on the whole video's spatial features, k=5]

More examples

What's the sauce?

- Videos provide rich supervision signal
- Don't use frame-wise invariance across time, but instead patch-level invariance • We can improve upon the (strong) DINO model
- Strongest improvements in unsupervised segmentation

UNIVERSITY OF AMSTERDAM

Is ImageNet worth 1 video? Learning strong image encoders from 1 long unlabelled video.

Shashanka Venkataramanan, Mamshad Nayeem Rizve, João Carreira, Yannis Avrithis*, https://www.barilla.com/it-it/ricette/tutte/farfalle-con-fave-e-pesto-ricotta-e-noci Vuki M Acano*

TimeTuning: DINO as init & use temporal info of videos.

Ctudy the extreme: try to learn from a single video,

Motivated by: Asano Rupprecht, Vedaldi. A critical analysis of self-supervision, or what we can learn from a single image. ICLR 2020

us figuring out

WTours proposed for learning video compression in ACCV 2022: Wiles et al. Compressed Vision for Efficient Video Understanding.

✓ Long ✓ High-res, smooth Semantically rich ✓ Scalable (we ♥ SSL) Walking Tours

The dataset consists of 10x 4K videos of different cities' Walking Tours.

WT Venice: https://www.youtube.com/watch?v=fGX0Te6pFvk. CC-BY Poptravel.

Dora: Discover and Track

Much like Dora, we walk around and learn from what we see.

Venkataramanan, Rizve, Carreira, Asano*, Avrithis*. Is ImageNet worth 1 video? Learning strong image encoders from 1 long unlabelled video. ICLR 2024

46

Spreading attention with Sinkhorn-Knopp Visualise attention of

Venkataramanan, Rizve, Carreira, Asano*, Avrithis*. Is ImageNet worth 1 video? Learning strong image encoders from 1 long unlabelled video. ICLR 2024

More examples: multi-object tracking in a ViT *emerges*

Venkataramanan, Rizve, Carreira, Asano*, Avrithis*. Is ImageNet worth 1 video? Learning strong image encoders from 1 long unlabelled video. ICLR 2024

Dora better than DINO WT+ Dora: great match

Venkataramanan, Rizve, Carreira, Asano*, Avrithis*. Is ImageNet worth 1 video? Learning strong image encoders from 1 long unlabelled video. ICLR 2024

49

But how does it compare against ImageNet pretraining?

DINO (IN-1k) Dora (1 WT) Dora (10 WT)

Venkataramanan, Rizve, Carreira, Asano*, Avrithis*. Is ImageNet worth 1 video? Learning strong image encoders from 1 long unlabelled video. ICLR 2024

What's the sauce?

- Training strong encoders from scratch with 1 video is possible
- Models match DINO (trained on ImageNet) in terms of performance
- The training loss is spatially dense and leverages time
- Multi-object tracking emerges •
- Walking videos are great for training vision models

Venkataramanan, Rizve, Carreira, Asano*, Avrithis*. Is ImageNet worth 1 video? Learning strong image encoders from 1 long unlabelled video. ICLR 2024

Future Foundation Models will be massively pretrained with videos. Post-pretraining has a large potential that we're only beginning to exploit

Who gave the talk again? Oh, hi, I'm Yuki

- Currently Assistant Professor with Video & Image Sense (VIS) Lab
- In two days: Full Professor and head of Fundamental AI Lab, University of Technology Nuremberg
- Our focus:
 - Self-supervised Learning
 - Multimodal Learning
 - Large Language Models
- Let's collaborate!

Fundamental AI Lab